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A relativistic description for the transformation under a change of baseline 
between the Fermi coordinates associated to two nonrotating local reference 
frames is carried out by using techniques based on the world function and the 
parallel propagator to space-times of small curvature. By assuming one of the 
observers in free motion, the transformation is evaluated in the first order of 
approximation with respect to the Riemann tensor and under the assumption of 
quasiparallelism between the two baselines. 

1. I N T R O D U C T I O N  

Since a precise interpretation of  astrometric data ultimately depends 
upon the validity of  the reference frames constructed in relativistic celestial 
mechanics, seeking appropriate  reference frames and comprehensive descrip- 
tions for the connection between the coordinates naturally associated to 
them has become an important  issue to derive that interpretation in a proper  
way, as required by modern techniques such as SLR, LLR, and VLBI. 

After several proposals made during recent years on the basis of  Synge's 
construction, some of them to avoid practical problems derived from the 
post-Newtonian dynamic formalism commonly used to describe the solar 
system (see, for example, Fukushima et al., 1986), it is becoming apparent  
that the proper reference frame constructed by Synge (1960), as well as the 
one provided by Misner et al. (1973), remain valid not only due to their 
clear and easy interpretation, but because, being the most natural choice in 
general relativity, if a further analysis of  the inconveniences arising from 
their choice is taken into account, they also appear  as still probably the most 
natural extensions of  the classical nonrotating and rotating reference frames, 
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respectively, whatever the origin, topocentric, terrestrial, or solar system 
barycentric, considered. 

In any case, since the main conceptual contributions come from the 
construction of these two reference frames and, on the other hand, the 
meaning of their naturally associated coordinates, both polar and Fermi, is 
already well known, in this paper attention will be paid to the second part 
of the problem, i.e., to the relationship between the (Fermi) coordinates 
associated to two of these frames. 

To do this we take Brumberg's (1979) suggestion and, therefore, the 
techniques based on the world function and the parallel propagator are 
systematically used following Synge's method (1960). On the other hand, 
since any proper reference frame, as constructed by Misner et  al., can be 
obtained by a three-dimensional rotation from a nonrotating proper refer- 
ence frame attached to the same observer's baseline as constructed by Synge, 
the analysis is mainly focused on the connection between reference frames 
of this last kind under a change of baseline. 

Furthermore, to keep the situation under control some realistic 
assumptions are successively made: First, since the problem reduces to a 
geometric transformation based on properties of geodesic triangles with at 
least one non-null side, one of the observer's baselines is supposed to be a 
(timelike) geodesic of the space-time, but the other baseline is not restricted 
in any way. This assumption is realistic because, in this case, one of the 
observers will be in free motion and the other, as it happens with a topo- 
centric observer, will not. Next, after obtaining a general relationship, the 
space-time itself is supposed to be of small curvature to resemble the solar 
system and the calculations are carried out in a first order of approximation 
with respect to the Riemann tensor. As a matter of consistency, the resulting 
formulas are also interpretated in the fiat-space-time particular case. Finally, 
the last transformation is derived by assuming that the baselines of the 
two observers are quasiparallel, which is an assumption really valid in any 
physical situation. 

2. THE WORLD FUNCTION AND THE 
PARALLEL PROPAGATOR 

We are, therefore, in the pseudo-Riemann space-time (d//, g) of general 
relativity and a region .4: is considered in it so that any two points P and 
Q in this region determine a unique geodesic FeQ passing through them. F~Q 
is supposed to be given, in local coordinates x t, by x ~ = x~(u), where u E [u0, ul] 
is a special affine parameter in the sense that the equations for FeQ read 
3U~/3u = O, where U ~= dx i /du  (Latin indices range from 1 to 4 and Greek 
from 1 to 3). 
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As was said, to study the problem under consideration, techniques based 
on the world function are used. A detailed discussion of these techniques 
can be found in Synge (1960). Here we only give a brief summary. In the 
region ~/" this function f2(PQ) is defined by the integral 

f l (eQ)  = f~(x ie, x:e) ' I 1̀ = ~(Ul --Uo) gijUiU:du (2.1) 
'dU0 

taken along Feo with xi~=xi(uo) and xiQ=x~(ul). This integral, which is a 
function of the eight coordinates of P and Q, has a value independent of the 
particular parameter chosen; it is, in fact, half the square of the measure of 
the geodesic joining e(x ip) and Q(x;Q); and, therefore, covariant differenti- 
ation can be carried out with respect to the coordinates of P or with respect 
to those of Q. [To avoid cumbersome notation, these covariant derivatives 
are denoted by simple subscripts without the usual vertical stroke and the 
operations will be applied in the order of the subscripts. Thus, the covariant 
derivatives of f2(PQ) with respect to the coordinates of P and those of Q 
are denoted by f~i~(PQ) and f~iQ(PQ), respectively.] Of course, both 
f]e~(PQ) and IliQ(PQ) are again functions of the eight coordinates of P and 
Q. They are two-point tensors. For example, ~i~(PQ) is a covariant vector 
under transformations at P, and an invariant under transformations at Q. 
In fact, it can be shown that 

f]~p(PQ) = -(ul  - uo) Uip, f~i~(eQ) = (ul - Uo) uiQ (2.2) 

u ~ and U ir being the tangent vectors to Feo at P and Q, respectively, and 

U~e=g~:pU j', U~e=g~QU -/Q (2.3) 

where ggp:,, and g,-ejQ are the metric tensor gg at P and Q, respectively. 
Therefore, f~P belongs to the tangent spaces of Jg at P, TeJ/, and ~eQ 
belongs to TQJ/I (in general, v ~ denotes the components of the vector 
w Te~g with respect to the coordinate basis of TpJ/{). 

If the case where FeQ is not null were considered, we would have 

o,p(eQ) = -LZo,, ~ ,e (eo)  = LZ,Q (2.4) 

where A. i~ and Z ;~ are the unit tangent vectors of F?Q at P and Q, respectively, 
and for their norms we would have 

g~,jpO~e(PQ)f~/e(PQ) = 2~(PQ) = L z 
(2.5) 

g~QjQf]ie( p Q )O:Q( p Q ) = 2f~( e Q ) = L 2 

so that - I]~ O~e(pQ) appear as tangent vectors at P and Q, 
respectively, with magnitude equal to the measure L of the geodesic FeQ. 
[In this regard, it is perhaps more suggestive to think of a standard notation 
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like PQ instead of - f ~ ( P Q ) ,  and QP instead of _OiQ(pQ), and to consider 
these vectors as "position vectors" in a similar way as we properly do in the 
flat-space-time case.] 

Now, if for a given point P the components of any vector ve Ted/l with 
respect to an orthonormal basis )~) are denoted by v (a) (a = 1, 2, 3, 4) (we 
shall label the vectors so that X~) is timelike), then the conditions of 
orthonormality may be written 

~ % ) ~ ( b ) i e  = q ( a b )  (2.6) 

where q(ub)= q(ab)= diag(1, 1, 1 , -1) ,  so that, although the labels (a) have 
no tensorial meaning, we shall raise and lower them by means of the 
q-matrix. Thus, we have 

~(a)iv = q(ab)~pb) ' t~ie~(a)_- 't'(ab)a'~(b)~. (2.7) 

SO that if two orthonormal tetrads s /t~) are attached to the same point 
P, then they are related by the Lorentz transformation 

L ( a )  _ ~ ( a ) . , i p  (2.8) (b) - -  zt'lp ]~(b) 

so that 

,~;) = L ~ p  jb) , /~)  = L~2~)  (2.9) 

On the other hand, if P, Q are two points in Y ,  and X(~) is an ortho- 
normal basis of Tes//carried by parallel transport along the geodesic Fp o, 
we can obtain another orthonormal basis )~) at Q by means of the parallel 
propagator g~,:e, which is a two-point symmetric tensor defined by 

- -  ~ ] ( a )  = ~ ,](a) ,](b)  (2.10) g i p j Q  -- / l ' (a) ip l~jQ tl(ab),%ip I~jQ 

so that 

and 

gj'o=gipKpgl~p:Q, gieYQ=gi~l~egKj.,,,QgmQjQ (2.11) 

_ ip - JQ ( 2 . 1 2 )  ~(a) jQ - -  gi l , jQ)~(a) , ~ (a ) ip  - -  gipjQ)C(a ) 

Then, by using the solution for finite geodesic triangles, the mentioned gen- 
eral expression for the transformation of Fermi coordinates is obtained in 
the next section [a detailed discussion of this geodesic solution can also be 
found in Synge (1960)]. 

3 .  G E N E R A L  T R A N S F O R M A T I O N  

Let us suppose that H is a timelike curve in X that is parametrized 
with the affine parameter s, so that A represents a generic point in it and let 
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us denote by n i~ the unit tangent vector of H at A, and by Z(A) the hyper- 
surface of  X defined by 

Z(A) := {P~.Ar/n,An'A(AP) = 0} (3.1) 

This hypersurface is made out of  all the geodesics corresponding to the 
Cauchy data (P, ~A(AP)) that intersect orthogonally to FI at A. If, in the 
same way, for a timelike geodesic F in X ,  without common points with H 
and with affine parameter s' and current point D, we consider the unit 
tangent vector n is, and 

X(h) := { QE ~U/nlof]i~ = 0} (3.2) 

we can define a field of  orthonormal tetrads (g on Z(A) by parallel transport- 
iA __ /.4 ing an orthonormal basis 2~) of  TAd//(chosen so that ~ ' ( 4 )  - -  n ) to any point 

P~E(A) along the geodesic FAe, i.e., 

A~) - _iP ~JA (3.3) - -  gj'A,r~(a) 

and, similarly, we will have the field (~' of  tetrads A.~e~) on E(D) by parallel 
is  __ is transporting an orthonormal basis A~) of  TDJr with s n , so that 

Zle) - .~'Q~s ( 3 .4 )  - -  ~jD. ~(a) 

Then the Fermi coordinates of a point B~E(A) c~ Z(D) can be written in 
terms of the world function in the following way: First, with respect to the 
baseline II and to the tetrad ~.~.) Fermi transported along H, which we shall 
denote by x(~)(B)= x(~)(B), x(4)(B)---x(4)(B)--" s, as 

_ iA X(~)(B)IA =X(~)(B)I~ - -ne~(AB)&(.), X(4)(B)IA = --X(4)(B)IA =S (3.5) 

where a = 1, 2, 3, so that, according to the interpretation given previously, 
by specifying the point A, they can be thought of as components of the 
"position vector" of B with respect to the origin A and the basis ~(;~); and 
second, with respect to the geodesic line F and the parallel-transported 
tetrad ~.~,) along F, which will be denoted by 

x'(~)(B) = x~,~)(B), x ' ( 4 ) ( B )  = - x ~ 4 ) ( B )  = s '  

a s  

iD X ( ~ ) ( B ) I o = X ( ~ ) ( B ) I D  = - ~ " ~ i D ( D B ) , ~ , ( u ) ,  X ( 4 ) ( B ) [ o  = - X ( 4 ) ( B ) [ D = S  ' (3.6) 

Now, in order to obtain the relationship between the Fermi coordinates 
[x(~)(B), x(4)(B)] and [x~)(B), x~4)(B)], let us suppose that C is the point of  
intersection of  X(A) and F, and that X(4)(C)[D = -As' .  Then, considering the 
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geodesic quadrilateral ABCD and the geodesic diagonal F~D, we have for 
the triangle ADB 

f2(AD) = f2(AB) + f~(BD) - f~iB(BA)~B(BD) + �89 q~ (ABD) (3.7) 

where r is a three-point invariant given by 

d~(ABD)=l fo' (1-~)3 ~ d ~ (3.8) 

provided that FAB and FBD are parametrized so that ( takes the values 0 at 
B, and 1 both at A and D. Similarly, for the triangle A CD we have 

f2(AD)=f~(AC)+O(CD)-f~ic(AC)f2ic(CD)+ �89162 (3.9) 

where 

i Io I d4f'z(O) 
r  = (1 - 0) 3 dO (3.10) 

and 0 is an affine parameter on FcA and FeD satisfying 0= 0 at C, and 0= 
1 both at A and D. 

Now, taking the covariant derivatives of (3.7) and (3.9) with respect to 
the coordinates of A, we have 

1 D.iA( BA ) - %,,( ABD ) + ~ r ABD ) = nia( CA ) - Z,a( A CD ) + �89 c~iA( A CD ) 
(3.11) 

and taking covariant derivatives of (3.7) and (3.9) with respect to the coordi- 
nates of D, we have 

~i~,(BD) - Zio(ABD) + �89 r = f2i~( CD) - Ziv(A CD) + �89 r CD) 
(3.12) 

where z(ABD) and z(ACD) are the three-point invariants 

z(ABD)=f2iB(AB)OiB(BD), z(ACD)=~lc(AC)f2ic(CD ) (3.13) 

Now, by parallel transporting the basis ~ )  at A to the point D along 
the path FAC--FCD, we have a new basis/.t~) at D that, passing through a 
basis at C, p~g), is given by 

U~) = g jDcg~)  = g~u~ c) (3.14) 

so that the old basis 2~] and this last one p~]) are related according to 
(2.9) by 

is _ r~b)~,i~ (3.15) 
]..l(a ) - -  L , ( a ) l t , ( b  ) 
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where L~b~ is a general Lorentz transformation (boost plus spatial rotation). 
On the other hand, (3.11) can be transformed into another expression by 
applying successively the two parallel propagators gj: and g~C to it, 

gj.~g~o[~,A(BA) - ZiA(ABD) + '  dA~(ABD)] 
- -  iA J c  �89 -gj~,gkD[E~i~( CA) -Zin(ACD) + (3.16) 

so that, if the inner product of  this expression by/1(~) is evaluated, we have 

/~ _ iA 1 iA ~;A(BA)A(~) ZgA(ABD)~(a) + 2qbiA(ABD).~(a) 
__ i n iA ! in -~I~(CA))~(~)-ZiA(ACD)~(,o + 2q)i.~(ACD)~(a) (3.17) 

On the other hand, taking into account (3.15), the inner product of 
(3.12) by i, /.t(~) gives 

! (b) lid [ f~; . (BD).  ZI.(ABD) + 2 ~i.(ABD)]L(,~)~(b) 

[~i,)(CD) - Zi~,(A CD) + • (b) ,iz, = z dA,(A CD)]L(,~)A(b) (3.18) 

so that, since ~ io (B D) , ~  = 0 and ~io(CD)A~ =0, we have 

�9 (fl) ,iD ! ( b )  rid ~,~,(BD)L(,oA(~) + [-Zio(ABD) + 20~,(ABD)]L(,oA(b) 
( 4 )  t i  D =f~,(CD)L(,~))L(4) + [-ZI~,(ACD) + �89 (3.19) 

and therefore, from (3.5), (3.6), (3.17), and (3.19), we finally have 

X(~)(B) I~ - X(~)(C)IA -X(~)(B)IoL~,~ 
- -  (4) t l  D 
- E~,(CD)Lw)3.(4 ) - [Z,n (A BD) - Z,~ (A CD) ] 3.(;~) 

+ [Ziv(ABD ) (b) ,i. - Z~o(A CD)]Lw)A(b ) + ~ [O~n(ABD) - dan (A CD)];t~) 

�89 ) _ (b) ti - Oiz,(A CD)]L( ,~) ,~(~  ( 3 . 2 0 )  

This is the general relationship sought. Thinking of  Fermi coordinates 
as components of position vectors in the way previously said, we can see in 
(3.20) (as well as in the procedure to get it) a generalization of  the fiat- 
space-time case. This case is obviously much simpler since, as we will see, 
we will have instead of (3.20) the following relationship: 

X(,o(B) IA - Xo~)(C)IA -X(t~(B) IoL~ = 0 (3.21) 

Therefore, on the basis of  this interpretation it can be said that, except 
for particular cases, the Riemann tensor manifest itself in the general need 
of  having to relate four points A, B, C, and D instead of  only three A, B, and 
D (to account for the nonsynchronism between the two baselines, through C 
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and D) and in the general impossibility of drawing polygonals with "touch- 
ing tips" as in the flat-space-time case. In fact, if this were the case, then we 
would have 

(4) ~i D ~io(CD)L(a)).(4) = 0 (3.22) 

_ is because in this case Z(A)=Z(D) ,  so that C=  D, Z~]-p(~), and, therefore, 
L(4)  = 0. On the other hand, since in this case the Riemann tensor is null, (a) 
then the two last terms of  the right-hand side of  (3.20) are null because the 
integrands in q~(ACD) and ~(ABD)  depend on this tensor [see (4.16) and 
(5.5)], and for the other two terms we would have as equivalent to them the 
following expression: 

JB lc (b) t ks  + [~j , (BA) f~s (BD ) -Y~c(CA)Y~s(CD)]L(~)~.(b) (3.23) 

Now, since in this case f~ys~(BA)=-gy,e~, and we also have 

nJ . (  BD)  = - g ~ o ~ S (  BD),  

n~.( B A  ) = - g}~a~A BA ), 

then (3.23) reduces to 

f~'c( CD) = -g~Cn~S( CD) 

-- -glc~i,~( CA) ~ r c ( C A ) -  ~ 
(3.24) 

__ JB kD iA lC kD iA gj~i~gks~ (BD))~(~) + gtci~gks f2 ( CD)&(~) 
iA JB (b) I k s__  iA lr (b) r s +gyBf~i~(BA)ge~<~)~<b) glcO~(CA)g~L(~)2(b) (3.25) 

or, taking into account that in this case 

j~ _ _ tc (3.26) gjBiAg KS - -  g i A k s  - -  g i A c g k s  

so that 

gj . j ,  ~i~ _ .  _ r(b)~, (3.27) BiA~ KS/~(ct) - -  I'~(ct)ks - -  l-"(a)'a~(b)ks 

then from (3.25) we would have, as equivalent to (3.23), the expression 

k s (b) r k s  iA iA B D L a ,2l, b k -t- ~ C D ,, k + ~, ( B A A ,, C2, ( C A ) A ,~ - ( ) ( )  ( ) s  ( ) P ( ) s  ~ ) ( ) -  .~ ( )  (3.28) 

or, what is the same, taking into account (3.5) and (3.6), and that 
f y s (  CD )p(~)ks = O, 

L~rX(~(B)ID-X(~)(B)IA +X(~)(C)IA (3.29) 

which, together with (3.20), gives the final relationship 

x(o)  (B)  I~ - X(o)09)1~ - X ( ~  ( B ) I ~ Z . ~  = 0 (3 .30)  

as expected. 
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4. APPROXIMATION BY SMALL CURVATURE 

Although the relationship (3.20), as general as it is, is not operative in 
any astrometric situation, two hypotheses are still available to derive a for- 
mula that is valid to approach a realistic situation without having to deal 
with any particular model or predetermined formalism, which is, according 
to Synge's scheme, the desired procedure. The first simplification can be 
achieved by assuming the space-time to be of small curvature and this 
hypothesis is applied to (3.20) in this section. The second one, concerning 
quasiparallelism, is deferred to the next section. 

Given an orthonormal tetrad ;t~a) of the vector space Tedr and denoting 
as before by v (a) the nonholonomic components of a vector v~ Tpsg, a space- 
time of small curvature is understood in the sense that the norm dl �9 on 
Tedr given by 

Ilvl[~= max  Iv<a)l (4.1) 
a =  1,2,3,4 

extended to any tensor space generated by Tp~' is the one used to introduce 
the hypothesis that, at any point P of the hypersurfaces E(A) and E(D), the 
Riemann tensor and its covariant derivatives are small, of the first order, or 
O1, with respect to the norm (4.1) associated to the fields of orthonormal 
tetrads cg and cg, defined on E(A) and E(D) in the previous section. Then, 
denoting by 02 second-order smallness with respect to the Riemann tensor, 
we start this section by observing that in any geodesic triangle OPQ in sff 
the following relation holds: 

g~ee=g~~176176 o -  � 8 9  02 (4.2) 

This can be verified by taking into account that in a space-time of small 
curvature the second covariant derivatives of the world function are given 
by (Synge, 1960) 

f2ip.ie = -gieJQ- hie:Q + 02 (4.3) 

where hiejQ is a 2-point tensor of the order Ol [see (4.21)], and then by 
substituting these derivatives into the expression that can be obtained by 
taking second covariant derivatives with respect to P and Q in the solution 
for the geodesic triangle OPQ, 

O(PQ) = ~ ( o P )  + f~(OQ) - Oio(OP)f~i~ + �89 (4.4) 

which is analogous to (3.7). 
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On the other hand, if we consider any geodesic square P Q R S  in JV and 
its geodesic diagonal FpR, we have for the two triangles PQR and P S R  

f I (PR)  = f l (QP)  + f~(OR) - f~'e(QP)~'e(OR) + �89 dp (PQR)  

= f~(PS)  + f~(SR) - f2,s(SP)f~'s(SR) + �89 c~ (PSR)  (4.5) 

so that, taking covariant derivatives in this expression with respect to P and 
R, we have 

- f ~ ( a P ) ~ . ~ ( a R )  + �89 r = - f ~ s ( s e ) f ~ s ( S R )  + �89 ck~(PSR) 

(4.6) 

and therefore, taking into account (4.3) again, we finally have 

JQ JQ R IR __ m s  m s  IR IR - -  ]- IR IR (g#.Wh#,)(~eWh) e) (glp +hie )(gms"[-hms) �9 - 2 [~b,fiPQR) - c~,p(PSR)] 

(4.7) 

from which we deduce the following result: for a geodesic square P Q R S  we 
have 

gJ,:~g~ - g~Sg~ s = g~Sh~ s + h~Sg~s- g~h~ - h~g~ 
1 IR _ 1_ IR 

+ 2 q~,~(PQR) 2 dpip(PSR) + 02 (4.8) 

Now, with these two results we are in a condition of simplifying (3.20) 
by obtaining an expression equivalent to the second and third terms of its 
right-hand side, i.e., to 

_ [ZiA(ABD ) _ Zi~,(ACD)]X(~% + [ZiD(ABD ) _ (b) ~z, Zg~,(ACD)]L(a)~.(b) (4.9) 

in the first approximation with respect to the Riemann tensor. 
In effect, if we take into account (3.13) and (2.8), from (4.9) we have 

+ [f2:,(BA)O~(BD) - f~(CA)f2~(CD)]~g) (4.10) 

Next, taking into account (4.3), from (4.10) we have 

JB __ l C iA [(gjBt,,+h:s,,,)f] (BD) (g,c~A+h,c~,,)~ (CD)]~.(,) 

- [~:B(BA)(g f~  + hPo) -f2t~( C A ) ( g ~  + h ~  + h~o)]~g) + 02 (4.11) 

Then, taking into account (2.10), from (4.11) we have 

+ h~z, gjgai~(BA)l~(2 ) + f2~z'(CD)p(,ok o + h,ci~gt~Ca~o(cn))~r 

- ~"(CA),~(a),~ - hlCg~a,~(CA)p~(2) + O: (4.12) 



Fermi Coordinate Transformation 1107 

Now, taking into account (4.2), from (4.12) we have 

lc  iA I C i lc  ia I ia {gkog,c + gkDh~ + h,~g,c +2 [ r  A B D  ) - r A CD ) ] } 

+ h,c,~g~Cf]~D(CD)2~% - h~Cg~:f~,A(CA)l~(g) + 02 (4.13) 

and finally, taking into account (3.5), (3.6), and (3.15), from (4.13) we have 

+ g~Ch~[E~k~(CD) - ~,D(BD)]2,(~)tA + h~g~[E~A(BA) - ~A (CA)]/.~(8) 

+ �89 [~o(ABD) - ( ~ ( A C D ) ]  

x [-f~kD(BD)~.(~)i A + ~iA(BA)~t~)] + O2 (4.14) 

Therefore, substituting (4.14) in (3.20), we have the following result: 
under the assumption of small curvature (O1) (3.20), reduces to 

(4) do = f~i~(CD)L(~)L(4 ) 

+ �89 - flkV(BD)]Z(~)~ + �89 c g~c[~;A(BA) - ~ ( C A ) ]  ~t~~ 

+ �88 [~b~(ABD) - ~b~(ACD)]L~) - �88 [~bg~(ABD) - ~ko(ACD)] ~t~g~ 

+ �88 - qb~(ACD)] [-n~(BD))~(~)IA + f ~  (BA)la~g)] + 02 (4.15) 

where r  is given by (Synge, 1960) 

r  = dpo(ACD) + r + r + Oz 

;o qbo(ACD) = 3k 3 ( 1 - 0 )  3 dd 0 [ (u~-u )2+  (U-Ul)2]{l122} du 
I 

f01 ful 2 , ~ ( A C D )  = 2k ~ 0(1 - 0) ~ dO [2(u~ - u)~{ 11221} 

+ 3 ( u : -  u)e (u -  u~){ 11222} + 3(u2-  u ) ( u -  u,)2{22111 } 

+ 2 ( u -  u03{22112} ] du (4.16) 
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fu 0 2 ( A C D ) = ~  Jo 0 2 ( 1 - 0 ) 3 d 0  [(u2-u)4{l12211} 
1 

+ 4(u2- u)a(u- ul) { 112212} 

+ 3(u2- u):(u - u~)2({ 112222} + {221111 } ) 

+ 4(u2 - u ) ( u -  Ul)3 {221121 } + ( u -  u~)4{221122} ] du 

k - l = u 2 - u l  

0 in this expression was already described in (3.10) and u is an affine 
parameter running from a current point Q, of FAc to the current point Q2 
of FAD with the same value of 0 as Q~ has, along the geodesic FQ, Q= so that 
u= u~ on A C  and u= u2 on AD.  The three parts into which ~a(ACD) is split 
involve, respectively, the Riemann tensor itself through the nonholonomic 
components of the symmetrized Riemann tensor in the symbol {1122}, its 
first-order covariant derivatives with respect to Q~ and Q2, denoted, respec- 
tively, by 1 and 2 in the fifth place of the 5-index symbols, and its second- 
order covariant derivatives appearing in the last two places of the 6-index 
symbols. Thus, for example, 

{1122} =S(ob~d)[X(~)(C)IA][x(b)(c)I,4[X(~)(D)L4][x(d)(D)IA] (4.17) 

and 

{ 11221} = S(,,bca~)[x(a)(c)Ial[X(b)(C)Ial[X (~)(D)IA] 

x [X(a)(D)Ia][x(e)(c)IA] (4.18) 

where 

(4.19) 
S(abcde ) = SiajAkalAm,tl~{Aa)~b~Ab)Z~ff)Z{ad)Z~e ~ 

S,,j,k,m, being the symmetrized Riemann tensor 

l 
S#kt = - ~ ( Rukt + R#yk ) (4.20) 

evaluated at A [a similar expression for c)(ABD) can be found in (5.5)]. 
Now, to evaluate ~A htc and h~ c in (4.15) we need the general expression 

for any two points P and Q in W. This can be found in Synge (1960) : The 
two-point tensor h~ej e is given by the integral 

fo' h ~Je __ _ 3_2 ( 1 - c r ) o ' g ~ j ~ s a b k t u k U t d ~  (4.21) 
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taken along the geodesic Ft,Q of  equations x~=x~(0.) with U~=dx~/dtr,  and 
where tr is an affine parameter such that x ~e = x~(0) and x ~Q = x;(1). Therefore, 
according to (2.2), we have 

f ~ ( P Q )  = - U~, I)~Q(PQ) --- U~Q (4.22) 

and, since the nonholonomic components h~,b) in an orthonormal basis A~c) 
parallel transported along Fee  are related to hi~je by 

h - l. ] ( a ) . ] ( b )  (4.23) ipjQ - -  I~(ab)lt'ip "r 

then from (4.21) and (4.22) we have 

f0' h(ab) = _3  U(~) u(a) (1 - 0.) 0.S(~bc~ d ~  (4.24) 

Now, taking an affine parameter 0.1 for the geodesic FAc with 0.! = 0 at A 
and 0.1 = 1 at C, from (4.19), (4.23), and (4.24) we have 

h _/., ~(a). (b) 
ialc ~ t~(ab)'t'iA I'tic 

3 fo ? = - _  t ~ , , . ,  )/~iA IZlc 2 (1-0.~)0.~S~ao~d)d0.~ ~-'~(C)(AC)~"~(d)"a"'xo(a)-(b) (4.25) 

and, since 

f~ ~ ) ( A C )  = - X ~ ) ( C ) I a ,  f~ <4)(A C) = 0 (4.26) 

from (4.25) we have 

-- (7/) (t~) (a) (b) 
h i ~ c - K ( . b r a ) [ X  (C)I.4][X (C)[A]J.I~/~tc (4.27) 

1 

where 

~0 
1 

Kl(abT~)  = __3  (1 -- 0.1)O'lS(ab~,S) do.1 (4.28) 

On the other hand, taking an affine parameter o2 for FcD so that 0.2 = 
0 at C and 0.2 = 1 at D, we have 

3 I f o l  1 = - ~ (1 - 0.2)cr2S(abca) d0.2 ~ (c ) (CD)~ (a):,~n~,(,)~,(b)t,~,.,jm~ ~k~ (4.29) 

and, since 

- -  tic - -  - -  t t tic - -  t D~o(CD ) - Dtc(CD)~,~o - (As);L~4)tc;L~) -- - ( A s  ) r/~4~) (4.30) 
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then we have 

where 

h - ~" [A~t)'2'l'(a)'lt(b) (4.31) lckD - -  lX(ab44)~kt_.l,~ ] t~'l c A'k19 
2 

~01 K(ab44 ) = __3 (1 - o'2) cr2S(ab44) da2 (4.32) 

Therefore, taking into account (4.27), (4.31), and that h~ =g~AhjA c, we have 

�89 

= �89 
1 

= �89 
1 

- -  1-r(b) As'[X(r)(C)IA][X(~)(C)IA]K(~bra ) (4.33) - -  2L,(4 ) 
1 

and 

- �89 hi~nk~ BD)A(,~),A 

i (b) k o  ( r )  (,~) =-2pkof~  ( B D ) [ X  (C)IA][X (C)[A]K(~r~) 
1 

- •  " l r x ( a ) t C ~  ~K - - - - 2  (0) ko k ]L k ) lAJt  ~, /IAJ (ab76)  
1 

1 (b) (p) (r) (6) =2L(v)[X (B)[nl[X (C)[A][X (C)IAIK(~r~) (4.34) 
1 

In a similar way we have 
! lA lc  D 2gtch~o~iA (BA)I~(g) 

- ~l.t'(")'aK(,,b44)(As',)2L~niA(BA ) 
2 

-- • -l(a)tA~''2rX(/~tB~l ~K - - - - 2  (a) (fl) I, '~ } [ ~. .IIAJ (ab44) 
2 

where 

and 

(4.35) 

//,(,)~A=g~qr(a)~c 

- �89 
_ % r(a)~A , 2  (b) 
- -  212 K(ab44)(As ) L(,~)~iA(CA) 

2 

L L(b) L -  l(,OIAs,'~2rv(~l r , ' .  a K = 2 (a) (13") I I t A I, rJ.-.'JlAJ (ab44) 
2 

(4.36) 
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and therefore, using (4.33)-(4.36) in (4.15), we finally have, under the 
assumption of  small curvature (O1), that (4.15) reduces to 

- -  T ( 4 ) A d  - -  ~ ( a ) ~ , )  

1 (7") (~) (b) , (b) (u) (c)IA][x (C)M[L(4)As+LoJ (B)lo] 
1 

1_ (b) - - l ( a )  t 2 (/3) 
+ 2K(ab44)L(a)L(~ (As) IX (C)[A-X(~(B)IA] 

2 

+ �88 ) iA ' - r  z [ r  - dpko(ACD)]l-~(g) 

+ �88 - r + f~iA(BA)t~(g)] + 02 

(4.37) 

since 

[ [ . ~ l ~ r ( 4 ) ~ t i  D _ /- ( 4 ) A . t  
iD~ "-~-t '~)L'(a)~(4) - -  L'(a)t-~a 

The interpretation of (4.37) is easier than that of (4.15) because, since 
X(:)(B)Io = X  (~(B) lo and X(4)(D)Ic = As',  then the third term of the left-hand 
side of  (4.37) and the first term of its right-hand side can be put together in 
the expression 

X (P ) t B  ~ L( '~)+X(4)rD "l L ('v (4.38) k lID (fl) t )[C (4) 

so that these two terms appear as the Fermi coordinates, 

x(4)(B) + Cns.) 

of B with respect to the baseline F, considering a rotating or nonrotating 
reference frame, depending respectively, on whether the Lorentz matrix is 
taken into account or not. On the other hand, when b = fl one can see inside 
the brackets of the second term of the right-hand side of (4.37) the same 
expression (4.38), so that this whole second term appears as a correction 
due to the Riemann tensor of the two former terms cited previously. Finally, 
it can be seen that the third term of the right-hand side is a correction of 
the first and second terms of the left-hand side due also to the Riemann 
tensor. Now, it is better to defer an interpretation of the remaining three 
terms of the right-hand side of (4.37) until after applying the hypothesis of 
quasiparallelism (this will be made in the next section). Obviously, when 
the Riemann tensor vanishes, (4.37) reduces to the formula (3.30), which 
corresponds to the fiat-space-time particular case. 
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5. APPROXIMATION BY QUASIPARALLELISM 

Let us suppose that U tc is a tangent vector to the geodesic F at C and 
that U 'A is a tangent vector of II at A. We introduce here the following 
hypothesis: the nonholonomic components in the tetrad A~) of  the image 

~iA T TIc of U tc at A by the parallel propagator g~ along the geodesic F•c, ~c,~ , 
differ from the corresponding nonholonomic components of U i~ in the same 
tetrad in quantities of  the order 01, i.e., 

g i A r r l c ~  _ 
l e t .~  ,'t,(a)i ~ - -  U i A A ( a ) i A  "1- O 1 (5.1) 

Now, with this hypothesis of  quasiparallelism between the world lines 
II and F it can be shown that ~(CD) is of  the order O1. In fact, considering 
the triangles ABC, ABD, and BCD, we have 

n ( s c )  = t a ( a S )  + n ( A C )  - n~.(as)ta;~(~ c )  + �89 (5.2) 
f l(BO) = ~2(AD) + ~2(AB) - fI,~(AD)fl'A(AB) + �89 d: (ABD) (5.3) 

~(BC)  = ~(BD)  + f~(DC) + �89 ~ (BCD) (5.4) 

where dp(ABC), dp(ABD), and Jp(BCD) are O1 quantities which have similar 
values to ~(ACD) given in (4.16). For example, 

r ABD ) = d:o( AB D ) + ~,( ABD ) + r A B D ) + O: 

dpo(ABD) = 3/~ 3 (1 - ~-)3 d~" [(52 - 5) 2 + (5 - 502] { 1122} d5 
0 l 

fo' ;) c~I(ABD)=2E 3 5 ( 1 - 0  3 d~ [2(52-5)3{11221} 
1 

+ 3(52 - 5)~(5 - 51) { 11222} 

+ 3(52- 5 / ( 5 -  51)2{22111 } 

+ 2 ( 5 -  50s{22112} 1 d5 (5.5) 

Io f) dp2(ABD) = �89 ~'2(1 - -  5 )  3 d~ [(52 - -  U)4{ 112211 } 
] 

+ 4(5z - 5)3(5 - 51) { 112212} 

+ 3(52- 5)2(5- 51)2({ 112222} + {221111 } ) 

+ 4(52- 5 ) ( 5 -  51)3{221121} + ( 5 -  51)4{221122} ] d5 

]~ - -1  =: . ._52__51 
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were ~ was already described in (3.8) and ti is an affine parameter running 
now from the geodesic Fso, where ~ = ~1, to the geodesic Fs~, where u = u2. 

Then, taking ~ ( A B )  and O(BC)  from (5.2) and (5.3) to (5.4), we have 

O( CD) = ~ ( A  C) - O(AD) + QiA(AD)QiA(AB) - Qi.,(AB)Q~A(A C) + 01 

(5.6) 

and, since from (5.1) we have 

Q(AD) = O ( A C )  + O( CD) + 01 (5.7) 

then from (5.6) we have 

20(CD) = n'A(AB)[niA(AD) - n,a(A C)] + O1 (5.8) 

On the other hand, taking covariant derivatives of (3.9) with respect to 
the coordinates of A, we have 

OiA(AD) = OiA(A C) - OtciA(A C)Otc( c o )  + O 1 (5.9) 

which with the help of (4.3) can also be written 

a,.,(AD) - O,a(A C) = g,c, An'c(CD) + O 1 (5.10) 

so that, by substituting (5.10) in (5.8), we have 

20(CD) = Oi"( AB  )gtc,.,Qtc( CD ) + 01 (5.11 ) 

But, since again by (5.1) we have 

0 '• (AB)gtc,aOlc(CD) = 01 (5.12) 

then from (5.11) we finally have 

O ( C D ) =  01 QED (5.13) 

Note that (5.7) and (5.12) come essentially from the hypothesis of 
quasiparallelism, because under this hypothesis the Lorentz matrix L{~ given 
by (3.15), which according to (3.14) can be written 

L(.} _ ,1 t ( a )  o 1 C - -  ~ , ( a ) ~ l c ~ i  A (5.14) 
( b )  - -  "tt'lc P t ( b )  - -  "n'lc ~ i A " t ' ( b )  

satisfies 

Z{~ = 8}~ + l ~  (5.15) 

with l ~ = 0 , .  Then, (5.1) together with (5.15) tells what this hypothesis 
means: that the relative velocity between the observers 17 and F is small, 
compared with the velocity of light. 
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Now, with this result it is possible to simplify the expression (4.16) for 
r because, if we take into account (5.10) and (5.13), we have 

(5.16) 
f~iA( AD ) X(i~) _ iA - -  ~ ~ i A ( A C ) s  + 0 1  = 0 1  

and, therefore, by letting u2 tend to Ul so that the triangle ACD becomes 
very thin, we see that r and c~(ACD) become 02, while ~(ACD)  
reduces to 

~(ACD)  = 2S(abca)[X('O( C)IA][X(b)( C)IA[X(C)(D)IAI[X(a)(D)I A (5.17) 

which, in turn, on account of (5.16), reduces to 

dpo(ACD) = 2S(abca)[OtA(AC)A,)~)f~JA(AC)A,())f~k~(AC)~,(k~)f~t"(AC)s ) + Ol] 

= 2S(abcd){ [X(")(C)IA[X(~)(C)I.d[x(=)(C)IA[X('~)(C)iA + ol } 
(5.18) 

Now, this expression is 02 because 

S(,b~a)[X(a)( C)IA][X(b)( C)[A][X(~)( C)[A][X(a)( C)tA] 

vanishes due to the skew-symmetry of the Riemann tensor. Therefore, taking 
into account (5.18) and that (As') 2-~ f~(CD) = O1, we finally have the follow- 
ing result: under the assumption of quasiparallelism (4.37) reduces to 

X(~)(B)IA - X(~)C)IA -- X(~)(B)IDL~,~) 

= [1~4~ + �89 As' 
1 

+ �89 K(~aT~)[X (7)(C)IA] [X (~)(C)Ix]L{~[X (~)(B)Iol 
I 

1 i A + ~ [~b,A(ABD)Z(, ) - dpk,(ABD)L~Z~'] 
] iA - -  kD (fl) tkD + 4[d~ko(ABD)][ ~ (BD)k(,),~+f~A(BA)L(,)L(~)]+O2 (5.19) 

where dp(ABD) is given by (5.5). 
According to (3.5) and (3.6), we see in the two first terms of the left- 

hand side of (5.19) the Fermi coordinates of B and C, x(,~)(B) and x(,~)(C), 
with respect to the nonrotating proper reference frame s chosen for I-I, 

(/3) , and in the third term the Fermi coordinates of B, x~a)(B) and L(,~)x(~), with 
respect, respectively, to the nonrotating proper reference frame &~) and the 
rotating proper reference frame ~ '~ P(a) related to )~(a) by (3.15), both attached 
to F. The meaning of the first and second terms of the right side was 
already discussed at the end of  the previous section. Nevertheless, it is to 
be noted that, in passing from (4.37) to (5.19), only the O1 factors 
l (4 )  (.), K(.4r~), and K ( . ~ )  have survived. As can be seen in (4.28) and (4.32), 

1 1 

these two curvature factors K(.4r~) and K(~py~), together with the aberration 
1 1 
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factors ~iA(ABD), c~ko(ABD), and r ) (which we can now simply 
write ~iA eko and iA , , ~b~o) contain the information, through its Riemann tensor 
of the particular space-time chosen for the transformation. (Note that this 
tensor is to be evaluated on the nongeodesic baseline.) Of course, although 
the contribution of these two terms will not be null in general, it is known 
that the whole first term may vanish in some particular space-times. Some- 
thing similar happens with the two last terms of the right-hand side: in 
general, it is not possible to cause to disappear in (5.19) any one of the 
three terms r r and r into which r is split to obtain a new 
transformation general enough to be valid in any realistic situation. For 
example, we can make r reduce to r by assuming I'~(AD) small 
compared to f~(BA) ; but by doing this, since el and ~ contain inner products 
of the symmetrized Riemann tensor with the Fermi coordinates of the event 
observed, B, with respect to the two baselines H and F through symbols like 
{ 11222}, then their contribution to the velocity of recession between the two 
baselines contained in ~b~i~ would be neglected, so that the new transfor- 
mation becomes imprecise to observe, in this case, near objects. Therefore, 
although ~bi,, ~ko, and r can be obtained in general by using the expanding 
series solution of the geodesic equation for FAD, the evaluation of r ~bl, 
and r must be deferred until a dynamical model has been selected. Writing, 
then, the last term in (5.19) in the form 

1 & , , (D kD _ (r) (D ,kD 
4 [ ~ b ~ D ] [ X ( ~ ( g ) z  ~'(a)& x(r)(B),~& L ( a ) J . ( ~ ]  (5.20) 

to better show this circumstance, we finally have the following transformation: 

x(o~( B) - x(o~( C ) - x ~ (  B ) L ~  

---- t'(a)rl(4) .'a- F~-(a4)] As' 
1 

- ( /3 )  , ( u )  + K(~L(u)x (B) 
1 

~_ I- f ,k "l iA __,,k T ( P ) ' l ' k o l  
4 L~giWa,(a) WkDa-.,(a)t~,(fl) ] 

1 ia p ,ko + 4 [~ko][x(a~(B)~,(a~(~,~ 

__ (7) (fl) tkO x(7)(B)~,/, L(~)~,(t ~ ] + Oz (5.21) 

where/~(~4) and k(~p), which are given by 
1 1 

/~(a4)  = �89 
1 1 (5.22) 

R(,~p) = �89 K(,~prs)x(~'~( C)x(a)( C) 
1 1 



1116 Gambiet al. 

have been introduced to show the final transformation in a more compact 
form. This transformation is now ready to input both the value of the 
Riemann tensor on the accelerated observer and the behavior of the two 
reference frames as characteristics derived from the particular selection of 
the observers and from the dynamical model to be chosen. 
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